
INTRODUCTION TO PARALLEL

COMPUTING

Plamen Krastev

Office: 38 Oxford, Room 117

Email: plamenkrastev@fas.harvard.edu

FAS Research Computing

Harvard University

To introduce you to the basic concepts and ideas

in parallel computing

To familiarize you with the major programming

models in parallel computing

To provide you with with guidance for designing

efficient parallel programs

OBJECTIVES:

2

OUTLINE:

 Introduction to Parallel Computing / High

Performance Computing (HPC)

 Concepts and terminology

 Parallel programming models

 Parallelizing your programs

 Parallel examples

3

What is High Performance Computing?

Pravetz 82 and 8M, Bulgarian Apple clones

Image credit: flickr 4

What is High Performance Computing?

4

Pravetz 82 and 8M, Bulgarian Apple clones

Image credit: flickr

What is High Performance Computing?

Odyssey supercomputer is the major
computational resource of FAS RC:
• 2,140 nodes / 60,000 cores
• 14 petabytes of storage

5

What is High Performance Computing?

Odyssey supercomputer is the major
computational resource of FAS RC:
• 2,140 nodes / 60,000 cores
• 14 petabytes of storage

Using the world’s fastest and largest computers to solve large and
complex problems.

5

Traditionally software has been written for serial computations:

 To be run on a single computer having a single Central Processing Unit (CPU)
 A problem is broken into a discrete set of instructions
 Instructions are executed one after another
 Only one instruction can be executed at any moment in time

Serial Computation:

6

Parallel Computing:
In the simplest sense, parallel computing is the simultaneous use of multiple
compute resources to solve a computational problem:

 To be run using multiple CPUs
 A problem is broken into discrete parts that can be solved concurrently
 Each part is further broken down to a series of instructions
 Instructions from each part execute simultaneously on different CPUs

7

Parallel Computers:
Virtually all stand-alone computers today are parallel from a hardware
perspective:

 Multiple functional units (floating point, integer, GPU, etc.)
 Multiple execution units / cores
 Multiple hardware threads

8

Intel Core i7 CPU and its
major components

Image Credit: Intel

Parallel Computers:
Networks connect multiple stand-alone computers (nodes) to create larger
parallel computer clusters

 Each compute node is a multi-processor parallel computer in itself
 Multiple compute nodes are networked together with an InfiniBand network
 Special purpose nodes, also multi-processor, are used for other purposes

9

Save time and/or money: In theory, throwing more resources at a
task will shorten its time to completion, with potential cost savings.
Parallel clusters can be built from cheap, commodity components.

Major reasons:

Why Use HPC?

10

Save time and/or money: In theory, throwing more resources at a
task will shorten its time to completion, with potential cost savings.
Parallel clusters can be built from cheap, commodity components.

Major reasons:

Solve larger problems: Many problems are so large and/or
complex that it is impractical or impossible to solve them on a
single computer, especially given limited computer memory.

Why Use HPC?

10

Save time and/or money: In theory, throwing more resources at a
task will shorten its time to completion, with potential cost savings.
Parallel clusters can be built from cheap, commodity components.

Major reasons:

Solve larger problems: Many problems are so large and/or
complex that it is impractical or impossible to solve them on a
single computer, especially given limited computer memory.

Provide concurrency: A single compute resource can only do one
thing at a time. Multiple computing resources can be doing many
things simultaneously.

Why Use HPC?

10

Save time and/or money: In theory, throwing more resources at a
task will shorten its time to completion, with potential cost savings.
Parallel clusters can be built from cheap, commodity components.

Major reasons:

Solve larger problems: Many problems are so large and/or
complex that it is impractical or impossible to solve them on a
single computer, especially given limited computer memory.

Provide concurrency: A single compute resource can only do one
thing at a time. Multiple computing resources can be doing many
things simultaneously.

Use of non-local resources: Using compute resources on a
wide area network, or even the Internet when local compute
resources are scarce.

Why Use HPC?

10

Future Trends:

11

Source: Top500.org

Future Trends:

The race is already on for Exascale Computing!
11

Source: Top500.org

HPC Terminology:

 Supercomputing / High-Performance Computing (HPC)
 Flop(s) – Floating point operation(s)
 Node – a stand alone computer
 CPU / Core – a modern CPU usually has several cores (individual processing

units)
 Task – a logically discrete section from the computational work
 Communication – data exchange between parallel tasks
 Speedup – time of serial execution / time of parallel execution
 Massively Parallel – refer to hardware of parallel systems with many

processors (“many” = hundreds of thousands)
 Pleasantly Parallel – solving many similar but independent tasks

simultaneously. Requires very little communication
 Scalability - a proportionate increase in parallel speedup with the addition of

more processors

12

Parallel Computer Memory Architectures:

Shared Memory:

 Multiple processors can operate independently,

but share the same memory resources
 Changes in a memory location caused by one

CPU are visible to all processors

13

Parallel Computer Memory Architectures:

Shared Memory:

 Multiple processors can operate independently,

but share the same memory resources
 Changes in a memory location caused by one

CPU are visible to all processors

13

Advantages:
 Global address space provides a user-friendly programming perspective to memory
 Fast and uniform data sharing due to proximity of memory to CPUs

Disadvantages:
 Lack of scalability between memory and CPUs. Adding more CPUs increases traffic

on the shared memory-CPU path
 Programmer responsibility for “correct” access to global memory

Distributed Memory:

 Requires a communication network to connect

inter-processor memory
 Processors have their own local memory. Changes

made by one CPU have no effect on others
 Requires communication to exchange data among

processors

Parallel Computer Memory Architectures:

14

Distributed Memory:

 Requires a communication network to connect

inter-processor memory
 Processors have their own local memory. Changes

made by one CPU have no effect on others
 Requires communication to exchange data among

processors

Parallel Computer Memory Architectures:

14

Advantages:
 Memory is scalable with the number of CPUs
 Each CPU can rapidly access its own memory without overhead incurred with trying to

maintain global cache coherency

Disadvantages:
 Programmer is responsible for many of the details associated with data communication

between processors
 It is usually difficult to map existing data structures to this memory organization, based

on global memory

Hybrid Distributed-Shared Memory:

The largest and fastest computers in the world today employ both shared and
distributed memory architectures.

 Shared memory component can be a shared memory machine and/or GPU
 Processors on a compute node share same memory space
 Requires communication to exchange data between compute nodes

Parallel Computer Memory Architectures:

15

Hybrid Distributed-Shared Memory:

The largest and fastest computers in the world today employ both shared and
distributed memory architectures.

 Shared memory component can be a shared memory machine and/or GPU
 Processors on a compute node share same memory space
 Requires communication to exchange data between compute nodes

Parallel Computer Memory Architectures:

15

Advantages and Disadvantages:
 Whatever is common to both shared and distributed memory architectures
 Increased scalability is an important advantage
 Increased programming complexity is a major disadvantage

Parallel Programming Models:

Parallel Programming Models exist as an abstraction above hardware and

memory architectures

 Shared Memory (without threads)

 Shared Threads Models (Pthreads, OpenMP)

 Distributed Memory / Message Passing (MPI)

 Data Parallel

 Hybrid

 Single Program Multiple Data (SPMD)

 Multiple Program Multiple Data (MPMD)

16

Shared Threads Models:

POSIX Threads

 Library based; requires parallel coding

 C Language only; Interfaces for Perl, Python and others exist

 Commonly referred to as Pthreads

 Most hardware vendors now offer Pthreads in addition to their proprietary

threads implementations

 Very explicit parallelism; requires significant programmer attention to detail

OpenMP

 Compiler directive based; can use serial code

 Jointly defined and endorsed by a group of major computer hardware and

software vendors

 Portable / multi-platform, including Unix and Windows platforms

 Available in C/C++ and Fortran implementations

 Can be very easy and simple to use - provides for "incremental parallelism"

17

Distributed Memory / Message Passing Models:

 A set of tasks that use their own local memory during computation.

Multiple tasks can reside on the same physical machine and/or across

an arbitrary number of machines

 Tasks exchange data through communications by sending and receiving

messages

 Data transfer usually requires cooperative operations to be performed by

each process. For example, a send operation must have a matching

receive operation

Message Passing Interface (MPI) is the "de facto" industry standard for

message passing, replacing virtually all other message passing

implementations used for production work. MPI implementations exist for

virtually all popular parallel computing platforms

18

Data Parallel Model:

 May also referred to as the Partitioned Global Address Space (PGAS) model
 It displays these characteristics:

 Address space is treated globally
 Parallel work focuses on performing operations on a data set
 Tasks work on different portions from the same data structure
 Tasks perform the same operation

19

Data Parallel Model:

 May also referred to as the Partitioned Global Address Space (PGAS) model
 It displays these characteristics:

 Address space is treated globally
 Parallel work focuses on performing operations on a data set
 Tasks work on different portions from the same data structure
 Tasks perform the same operation

Example Implementations:

 Coarray Fortran: A small set of extension to Fortran 95. Compiler dependent

 Unified Parallel C (UPC): An extension to the C programming language. Compiler

dependent

19

Hybrid Parallel Programming Models:

Currently, a common example of a hybrid model is the combination of the message passing
model (MPI) with the threads model (OpenMP)

 Threads perform computationally intensive kernels using local, on-node data

 Communications between processes on different nodes occurs over the network using

MPI

This hybrid model lends itself well to the increasingly common hardware environment of
clustered multi/many-core machines

20

Hybrid Parallel Programming Models:

Another similar and increasingly popular example of a hybrid model is using MPI with GPU
(Graphics Processing Unit) programming

 GPUs perform computationally intensive kernels using local, on-node data

 Communications between processes on different nodes occurs over the network using

MPI

21

Languages using parallel computing:

 C/C++

 Fortran

 MATLAB

 Python

 R

 Perl

 Julia

 And others
22

Can my code be parallelized?

 Does it have large loops that repeat the same

operations?

 Does your code do multiple tasks that are not dependent

on one another? If so is the dependency weak?

 Can any dependencies or information sharing be

overlapped with computation? If not, is the amount of

communications small?

 Do multiple tasks depend on the same data?

 Does the order of operations matter? If so how strict does

it have to be?

23

Basic guidance for efficient parallelization:

 Is it even worth parallelizing my code?

 Does your code take an intractably long amount of time to complete?

 Do you run a single large model or do statistics on multiple small runs?

 Would the amount of time it take to parallelize your code be worth the gain

in speed?

 Parallelizing established code vs. starting from scratch

 Established code: Maybe easier / faster to parallelize, but my not give

good performance or scaling

 Start from scratch: Takes longer, but will give better performance,

accuracy, and gives the opportunity to turn a “black box” into a code you

understand

24

Basic guidance for efficient parallelization:

 Increase the fraction of your program that can be parallelized. Identify

the most time consuming parts of your program and parallelize them.

This could require modifying your intrinsic algorithm and code’s

organization

 Balance parallel workload

 Minimize time spent in communication

 Use simple arrays instead of user defined derived types

 Partition data. Distribute arrays and matrices – allocate specific memory

for each MPI process

25

Considerations about parallelization:

You parallelize your program to run faster, and to solve larger and more
complex problems.

How much faster will the program run?

)(

)1(
)(

nT

T
nS 

Speedup:
Time to complete the job

on one process

Time to complete the job

on n process

Efficiency:

n

nS
nE

)(
)(

Tells you how efficiently you parallelize

your code

26

Oversimplified example:

p  fraction of program that can be parallelized

1 - p  fraction of program that cannot be parallelized

n  number of processors

Then the time of running the parallel program will be

1 – p + p/n of the time for running the serial program

80% can be parallelized

20 % cannot be parallelized

n = 4

1 - 0.8 + 0.8 / 4 = 0.4 i.e., 40% of the time for running the serial code

You get 2.5 speed up although you run on 4 cores since only 80% of

your code can be parallelized (assuming that all parts in the code can

complete in equal time)

27

Oversimplified example, cont’d:

20%

80%

20% 20%

Serial

Parallel

Process 1

Process 2

Process 3

Process 4

parallelized

Not parallelized

28

More realistic example:

20%

80%

20% 20%

Serial

Parallel

Process 1

Process 2

Process 3

Process 4

parallelized

Not parallelized

Communication

overhead

Load unbalance 29

Realistic example: Speedup of matrix vector multiplication in
large scale shell-model calculations

30

Designing parallel programs - partitioning:

31

One of the first steps in designing a parallel program is to break the problem into discrete
“chunks” that can be distributed to multiple parallel tasks.

Designing parallel programs - partitioning:

31

One of the first steps in designing a parallel program is to break the problem into discrete
“chunks” that can be distributed to multiple parallel tasks.

Domain Decomposition:
Data associate with a problem is
partitioned – each parallel task works
on a portion of the data

Designing parallel programs - partitioning:

31

One of the first steps in designing a parallel program is to break the problem into discrete
“chunks” that can be distributed to multiple parallel tasks.

Domain Decomposition:
Data associate with a problem is
partitioned – each parallel task works
on a portion of the data

There are different ways
to partition the data

Designing parallel programs - partitioning:

32

One of the first steps in designing a parallel program is to break the problem into discrete
“chunks” that can be distributed to multiple parallel tasks.

Functional Decomposition:
Problem is decomposed according to the work that must be done. Each parallel task
performs a fraction of the total computation.

Designing parallel programs - communication:

33

Most parallel applications require tasks to share data with each other.

Designing parallel programs - communication:

33

Most parallel applications require tasks to share data with each other.

Cost of communication: Computational resources are used to package and transmit data.
Requires frequently synchronization – some tasks will wait instead of doing work. Could
saturate network bandwidth.

Designing parallel programs - communication:

33

Most parallel applications require tasks to share data with each other.

Cost of communication: Computational resources are used to package and transmit data.
Requires frequently synchronization – some tasks will wait instead of doing work. Could
saturate network bandwidth.

Latency vs. Bandwidth: Latency is the time it takes to send a minimal message between two
tasks. Bandwidth is the amount of data that can be communicated per unit of time. Sending
many small messages can cause latency to dominate communication overhead.

Designing parallel programs - communication:

33

Most parallel applications require tasks to share data with each other.

Cost of communication: Computational resources are used to package and transmit data.
Requires frequently synchronization – some tasks will wait instead of doing work. Could
saturate network bandwidth.

Latency vs. Bandwidth: Latency is the time it takes to send a minimal message between two
tasks. Bandwidth is the amount of data that can be communicated per unit of time. Sending
many small messages can cause latency to dominate communication overhead.

Synchronous vs. Asynchronous communication: Synchronous communication is referred to
as blocking communication – other work stops until the communication is completed.
Asynchronous communication is referred to as non-blocking since other work can be done
while communication is taking place.

Designing parallel programs - communication:

33

Most parallel applications require tasks to share data with each other.

Cost of communication: Computational resources are used to package and transmit data.
Requires frequently synchronization – some tasks will wait instead of doing work. Could
saturate network bandwidth.

Latency vs. Bandwidth: Latency is the time it takes to send a minimal message between two
tasks. Bandwidth is the amount of data that can be communicated per unit of time. Sending
many small messages can cause latency to dominate communication overhead.

Synchronous vs. Asynchronous communication: Synchronous communication is referred to
as blocking communication – other work stops until the communication is completed.
Asynchronous communication is referred to as non-blocking since other work can be done
while communication is taking place.

Scope of communication: Point-to-point communication – data transmission between tasks.
Collective communication – involves all tasks (in a communication group)

Designing parallel programs - communication:

33

Most parallel applications require tasks to share data with each other.

Cost of communication: Computational resources are used to package and transmit data.
Requires frequently synchronization – some tasks will wait instead of doing work. Could
saturate network bandwidth.

Latency vs. Bandwidth: Latency is the time it takes to send a minimal message between two
tasks. Bandwidth is the amount of data that can be communicated per unit of time. Sending
many small messages can cause latency to dominate communication overhead.

Synchronous vs. Asynchronous communication: Synchronous communication is referred to
as blocking communication – other work stops until the communication is completed.
Asynchronous communication is referred to as non-blocking since other work can be done
while communication is taking place.

Scope of communication: Point-to-point communication – data transmission between tasks.
Collective communication – involves all tasks (in a communication group)

This is only partial list of things to consider!

Designing parallel programs – load balancing:

34

Load balancing is the practice of distributing approximately equal amount of work so that all
tasks are kept busy all the time.

Designing parallel programs – load balancing:

34

Load balancing is the practice of distributing approximately equal amount of work so that all
tasks are kept busy all the time.

Designing parallel programs – load balancing:

34

Load balancing is the practice of distributing approximately equal amount of work so that all
tasks are kept busy all the time.

How to Achieve Load Balance?

Equally partition the work given to each task: For array/matrix operations equally
distribute the data set among parallel tasks. For loop iterations where the work done for
each iteration is equal, evenly distribute iterations among tasks.

Use dynamic work assignment: Certain class problems result in load imbalance even if data
is distributed evenly among tasks (sparse matrices, adaptive grid methods, many body
simulations, etc.). Use scheduler – task pool approach. As each task finishes, it queues to
get a new piece of work. Modify your algorithm to handle imbalances dynamically.

Designing parallel programs – I/O:

35

The Bad News:
 I/O operations are inhibitors of parallelism
 I/O operations are orders of magnitude slower than memory operations
 Parallel file systems may be immature or not available on all systems
 I/O that must be conducted over network can cause severe bottlenecks

Designing parallel programs – I/O:

35

The Bad News:
 I/O operations are inhibitors of parallelism
 I/O operations are orders of magnitude slower than memory operations
 Parallel file systems may be immature or not available on all systems
 I/O that must be conducted over network can cause severe bottlenecks

The Good News:
 Parallel file systems are available (e.g., Lustre)
 MPI parallel I/O interface has been available since 1996 as a part of MPI-2

Designing parallel programs – I/O:

35

The Bad News:
 I/O operations are inhibitors of parallelism
 I/O operations are orders of magnitude slower than memory operations
 Parallel file systems may be immature or not available on all systems
 I/O that must be conducted over network can cause severe bottlenecks

The Good News:
 Parallel file systems are available (e.g., Lustre)
 MPI parallel I/O interface has been available since 1996 as a part of MPI-2

I/O Tips:
 Reduce overall I/O as much as possible
 If you have access to parallel file system, use it
 Writing large chunks of data rather than small ones is significantly more efficient
 Fewer, larger files perform much better than many small files
 Have a subset of parallel tasks to perform the I/O instead of using all tasks, or
 Confine I/O to a single tasks and then broadcast (gather) data to (from) other tasks

Example – array processing:

36

task 1 task 2 … task N

do i = 1, N
 a(i) = fcn(i)
end do

Serial code

Find out if I am MASTER or WORKER
if I am MASTER

 initiate the array
 send each WORKER info on part of array it owns
 send each WORKER its portion of initial array
 receive results from each WORKER

else if I am WORKER
 receive from MASTER info on part of array I own
 receive from MASTER my part of array

 # process my portion of array
 do i = mystart, myend
 a(i) = fcn(i)
 end do

 send MASTER results

end if

Parallel code

Contact Information:

37

Harvard Research Computing Website:

http://rc.fas.harvard.edu

Email:

rchelp@fas.harvard.edu

plamenkrastev@fas.harvard.edu

