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OUTLINE: 

 Introduction to Parallel Computing / High 

Performance Computing (HPC) 

 

 Concepts and terminology 

 

  Parallel programming models 

 

 Parallelizing your programs 

 

 Parallel examples 
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What is High Performance Computing? 

Odyssey supercomputer is the major 
computational resource of FAS RC: 
• 2,140 nodes / 60,000 cores 
• 14 petabytes of storage 

Using the world’s fastest and largest computers to solve large and 
complex problems. 
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Traditionally software has been written for serial computations: 
 
 To be run on a single computer having a single Central Processing Unit (CPU)  
 A problem is broken into a discrete set of instructions 
 Instructions are executed one after another 
 Only one instruction can be executed at any moment in time 

Serial Computation: 
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Parallel Computing: 
In the simplest sense, parallel computing is the simultaneous use of multiple 
compute resources to solve a computational problem: 
 
 To be run using multiple CPUs 
  A problem is broken into discrete parts that can be solved concurrently 
  Each part is further broken down to a series of instructions 
  Instructions from each part execute simultaneously on different CPUs 
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Parallel Computers: 
Virtually all stand-alone computers today are parallel from a hardware 
perspective: 
 
 Multiple functional units (floating point, integer, GPU, etc.)  
 Multiple execution units / cores  
 Multiple hardware threads 
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Intel Core i7 CPU and its 
major components 
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Parallel Computers: 
Networks connect multiple stand-alone computers (nodes) to create larger 
parallel computer clusters 
 
 Each compute node is a multi-processor parallel computer in itself 
 Multiple compute nodes are networked together with an InfiniBand network 
 Special purpose nodes, also multi-processor, are used for other purposes   
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Save time and/or money: In theory, throwing more resources at a 
task will shorten its time to completion, with potential cost savings. 
Parallel clusters can be built from cheap, commodity components. 

Major reasons: 

Why Use HPC? 
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Save time and/or money: In theory, throwing more resources at a 
task will shorten its time to completion, with potential cost savings. 
Parallel clusters can be built from cheap, commodity components. 

Major reasons: 

Solve larger problems: Many problems are so large and/or 
complex that it is impractical or impossible to solve them on a 
single computer, especially given limited computer memory. 

Provide concurrency: A single compute resource can only do one 
thing at a time. Multiple computing resources can be doing many 
things simultaneously. 

Use of non-local resources: Using compute resources on a 
wide area network, or even the Internet when local compute 
resources are scarce. 

Why Use HPC? 

10 



Future Trends: 
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Future Trends: 

The race is already on for Exascale Computing! 
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HPC Terminology: 

 Supercomputing / High-Performance Computing (HPC) 
 Flop(s) – Floating point operation(s) 
 Node – a stand  alone computer 
 CPU  / Core – a modern CPU usually has several cores (individual processing 

units ) 
 Task – a logically discrete section from the computational work 
 Communication – data exchange between parallel tasks 
 Speedup – time of serial execution / time of parallel execution 
 Massively Parallel – refer to hardware of parallel systems with many 

processors (“many” = hundreds of thousands) 
 Pleasantly Parallel – solving many similar but independent tasks 

simultaneously. Requires very little communication 
 Scalability -  a proportionate increase in parallel speedup with the addition of 

more processors 
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Parallel Computer Memory Architectures: 

Shared Memory: 
 
 Multiple processors can operate independently, 

but share the same memory resources 
 Changes  in a memory location caused by one  

CPU are visible to all processors 
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Advantages: 
 Global address space provides a user-friendly programming perspective to memory 
 Fast and uniform data sharing due to proximity of memory to CPUs 
 
Disadvantages: 
 Lack of scalability between memory and CPUs. Adding more CPUs increases traffic 

on the shared memory-CPU path 
 Programmer responsibility for “correct” access to global memory  



Distributed Memory: 
 
 Requires a communication network to connect 

inter-processor memory 
 Processors have their own local memory. Changes 

made by one CPU have no effect on others 
 Requires communication to exchange data among 

processors 

Parallel Computer Memory Architectures: 
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Advantages: 
 Memory is scalable with the number of CPUs 
 Each CPU can rapidly access its own memory without overhead incurred with trying to 

maintain global cache coherency 
 
Disadvantages: 
 Programmer is responsible for many of the details associated with  data communication 

between processors 
 It is usually difficult to map existing data structures to this memory organization, based 

on global memory 



Hybrid Distributed-Shared Memory: 
 
The largest and fastest computers in the world today employ both shared and 
distributed memory architectures. 

 Shared memory component can be a shared memory machine and/or GPU 
 Processors on a compute node share same memory space 
 Requires communication to exchange data between compute nodes 

Parallel Computer Memory Architectures: 
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Hybrid Distributed-Shared Memory: 
 
The largest and fastest computers in the world today employ both shared and 
distributed memory architectures. 

 Shared memory component can be a shared memory machine and/or GPU 
 Processors on a compute node share same memory space 
 Requires communication to exchange data between compute nodes 

Parallel Computer Memory Architectures: 
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Advantages and Disadvantages: 
 Whatever is common to both shared and distributed memory architectures 
 Increased scalability is an important advantage 
 Increased programming complexity is a major disadvantage 



Parallel Programming Models: 

Parallel Programming Models exist as an abstraction above hardware and 

memory architectures 

 

 Shared Memory (without threads) 

 

 Shared Threads Models (Pthreads, OpenMP) 

 

 Distributed Memory / Message Passing (MPI) 

 

 Data Parallel 

 

 Hybrid 

 

 Single Program Multiple Data (SPMD) 

 

 Multiple Program Multiple Data (MPMD)  
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Shared Threads Models: 

POSIX Threads 

 

 Library based; requires parallel coding 

 C Language only; Interfaces for Perl, Python and others exist 

 Commonly referred to as Pthreads 

 Most hardware vendors now offer Pthreads in addition to their proprietary 

threads implementations 

 Very explicit parallelism; requires significant programmer attention to detail 

 

OpenMP 

 

 Compiler directive based; can use serial code 

 Jointly defined and endorsed by a group of major computer hardware and 

software vendors 

 Portable / multi-platform, including Unix and Windows platforms 

 Available in C/C++ and Fortran implementations 

 Can be very easy and simple to use - provides for "incremental parallelism" 
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Distributed Memory / Message Passing Models: 

 A set of tasks that use their own local memory during computation. 

Multiple tasks can reside on the same physical machine and/or across 

an arbitrary number of machines 

 

 Tasks exchange data through communications by sending and receiving 

messages 

 

 Data transfer usually requires cooperative operations to be performed by 

each process. For example, a send operation must have a matching 

receive operation 

 

Message Passing Interface (MPI) is the "de facto" industry standard for 

message passing, replacing virtually all other message passing 

implementations used for production work. MPI implementations exist for 

virtually all popular parallel computing platforms 
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Data Parallel Model: 

 May also referred to as the Partitioned Global Address Space (PGAS) model 
 It displays these characteristics: 

 Address space is treated globally 
 Parallel work focuses on performing operations on a data set 
 Tasks work on different portions from the same data structure 
 Tasks perform the same operation 
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Data Parallel Model: 

 May also referred to as the Partitioned Global Address Space (PGAS) model 
 It displays these characteristics: 

 Address space is treated globally 
 Parallel work focuses on performing operations on a data set 
 Tasks work on different portions from the same data structure 
 Tasks perform the same operation 

 

Example Implementations: 
 
 Coarray Fortran: A small set of extension to Fortran 95. Compiler dependent 

 
 Unified Parallel C (UPC): An extension to the C programming language. Compiler 

dependent 
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Hybrid Parallel Programming Models: 

Currently, a common example of a hybrid model is the combination of the message passing 
model (MPI) with the threads model (OpenMP) 

 
 Threads perform computationally intensive kernels using local, on-node data 

 
 Communications between processes on different nodes occurs over the network using 

MPI 
 

This hybrid model lends itself well to the increasingly common hardware environment of 
clustered multi/many-core machines 
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Hybrid Parallel Programming Models: 

Another similar and increasingly popular example of a hybrid model is using MPI with GPU 
(Graphics Processing Unit) programming 

 
 GPUs perform computationally intensive kernels using local, on-node data 

 
 Communications between processes on different nodes occurs over the network using 

MPI 
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Languages  using parallel computing: 
 

 C/C++ 

 

 Fortran 

 

 MATLAB 

 

 Python 

 

 R 

 

 Perl 

 

 Julia 

 

 And others 
22 



Can my code be parallelized? 
 

 Does it have large loops that repeat the same 

operations?  

 

 Does your code do multiple tasks that are not dependent 

on one another? If so is the dependency weak?  

 

 Can any dependencies or information sharing be 

overlapped with computation? If not, is the amount of 

communications small?  

 

 Do multiple tasks depend on the same data?  

 

 Does the order of operations matter? If so how strict does 

it have to be?  
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Basic guidance for efficient parallelization: 

 Is it even worth parallelizing my code? 

 

 Does your code take an intractably long amount of time to complete? 

 

 Do you run a single large model or do statistics on multiple small runs? 

 

 Would the amount of time it take to parallelize your code be worth the gain 

in speed? 

 

 Parallelizing established code vs. starting from scratch 

 

 Established code: Maybe easier / faster to parallelize, but my not give 

good performance or scaling 

 

 Start from scratch: Takes longer, but will give better performance, 

accuracy, and gives the opportunity to turn a “black box” into a code you 

understand 
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Basic guidance for efficient parallelization: 

 Increase the fraction of your program that can be parallelized. Identify 

the most time consuming parts of your program and parallelize them. 

This could require modifying your intrinsic algorithm and code’s 

organization 

 

 Balance parallel workload 

 

 Minimize time spent in communication 

 

 Use simple arrays instead of user defined derived types 

 

 Partition data. Distribute arrays and matrices – allocate specific memory 

for each MPI process 
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Considerations about parallelization: 

You parallelize your program to run faster, and to solve larger and more 
complex problems. 

How much faster will the program run? 
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Speedup: 
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Tells you how efficiently you parallelize 

your code 
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Oversimplified example: 

p  fraction of program that can be parallelized 

1 - p  fraction of program that cannot be parallelized 

n  number of processors 

Then the time of running the parallel program will be 

1 – p + p/n of the time for running the serial program  

80% can be parallelized 

20 % cannot be parallelized 

n = 4 

1 - 0.8 + 0.8 / 4 = 0.4 i.e., 40% of the time for running the serial code 

You get 2.5 speed up although you run on 4 cores since only 80% of 

your code can be parallelized (assuming that all parts in the code can 

complete in equal time) 
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Oversimplified example, cont’d: 

20% 

80% 

20% 20% 

Serial 

Parallel 

Process 1 

Process 2 

Process 3 

Process 4 

parallelized 

Not parallelized 
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More realistic example: 

20% 

80% 

20% 20% 

Serial 

Parallel 

Process 1 

Process 2 

Process 3 

Process 4 

parallelized 

Not parallelized 

Communication 

overhead 

Load unbalance 29 



Realistic example: Speedup of matrix vector multiplication in 
large scale shell-model calculations 
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Designing parallel programs - partitioning: 
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One of the first steps in designing a parallel program is to break the problem into discrete 
“chunks” that can be distributed to multiple parallel tasks. 

Domain Decomposition: 
Data associate with a problem is 
partitioned – each parallel task works 
on a portion of the data   

There are different ways 
to partition the data 



Designing parallel programs - partitioning: 
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One of the first steps in designing a parallel program is to break the problem into discrete 
“chunks” that can be distributed to multiple parallel tasks. 

Functional Decomposition: 
Problem is decomposed according to the work that must be done. Each parallel task 
performs a fraction of the total computation.    
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Most parallel applications require tasks to share data with each other.  
 
Cost of communication: Computational resources are used to package and transmit data. 
Requires frequently synchronization – some tasks will wait instead of doing work. Could 
saturate network bandwidth. 
 
Latency vs. Bandwidth: Latency is the time it takes to send a minimal message between two 
tasks. Bandwidth is the amount of data that can be communicated per unit of time. Sending 
many small messages can cause latency to dominate communication overhead. 
 
Synchronous vs. Asynchronous communication: Synchronous communication is referred to 
as blocking communication – other work stops until the communication is completed. 
Asynchronous communication is referred to as  non-blocking since other work can be done 
while communication is taking place. 
 
Scope of communication: Point-to-point communication – data transmission between tasks. 
Collective communication – involves all tasks (in a communication group)  
 
This is only partial list of things to consider! 
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Load balancing is the practice of distributing approximately equal amount of work so that all 
tasks are kept busy all the time.  

How to Achieve Load Balance? 
 
Equally partition the work given to each task: For array/matrix operations equally 
distribute the data set among parallel tasks. For loop iterations where the work done for 
each iteration is equal, evenly distribute iterations among tasks. 
 
Use dynamic work assignment: Certain class problems result in load imbalance even if data 
is distributed evenly among tasks (sparse matrices, adaptive grid methods, many body 
simulations, etc.). Use scheduler – task pool approach. As each task finishes, it queues to 
get a new piece of work. Modify your algorithm to handle imbalances dynamically.  



Designing parallel programs – I/O: 
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The Bad News: 
  I/O operations are inhibitors of parallelism 
  I/O operations are orders of magnitude slower than memory operations 
 Parallel file systems may be immature or not available on all systems 
 I/O that must be conducted over network can cause severe bottlenecks 

 
The Good News: 
 Parallel file systems are available (e.g., Lustre) 
 MPI parallel  I/O interface has been available since 1996 as a part of MPI-2 
 
I/O Tips: 
 Reduce overall I/O as much as possible 
 If you have access to parallel file system, use it 
 Writing large chunks of data rather than small ones is significantly more efficient 
 Fewer, larger files perform much better than many small files 
 Have a subset of parallel tasks to perform the I/O instead of using all tasks, or 
 Confine I/O to a single tasks and then broadcast (gather) data to (from) other tasks 



Example – array processing: 
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task 1 task 2 … task N 

do i = 1, N 
   a( i ) = fcn( i ) 
end do 

Serial code 

Find out if I am MASTER or WORKER 
if I am MASTER 
 
   initiate the array 
   send each WORKER info on part of array it owns 
   send each WORKER its portion of initial array 
   receive results from each WORKER 
 
else if I am WORKER 
   receive from MASTER info on part of array I own 
   receive from MASTER my part of array 
  
   # process my portion of array 
   do i = mystart, myend 
      a( i ) = fcn( i ) 
   end do 
 
  send MASTER results 
 
end if 

Parallel code 



Contact Information: 
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Harvard Research Computing Website:  

 

http://rc.fas.harvard.edu  

 

Email:  

 

rchelp@fas.harvard.edu  

 

plamenkrastev@fas.harvard.edu  


